Legendre polynomials

Legendre polynomials
French\ \ polynômes de Legendre
German\ \ Legendresche Polynome
Dutch\ \ Legendre-polynomen
Italian\ \ polinomi di Legendre
Spanish\ \ polynomios de Legendre
Catalan\ \ polinomis de Legendre
Portuguese\ \ polinómios de Legendre; polinômios de Legendre (bra)
Romanian\ \ -
Danish\ \ Legendrepolynomier
Norwegian\ \ -
Swedish\ \ -
Greek\ \ πολυώνυμα Legendre
Finnish\ \ Legendren polynomit
Hungarian\ \ Legendre-polinomok
Turkish\ \ Legendre çokterimlileri; Legendre polinomları
Estonian\ \ Legendre'i polünoomid
Lithuanian\ \ Legendre polinomai ; Ležandro polinomai
Slovenian\ \ -
Polish\ \ wielomiany Legendre'a
Russian\ \ полиноминалы Лежандра
Ukrainian\ \ -
Serbian\ \ Лежандрови полиноми
Icelandic\ \ Legendre margliða
Euskara\ \ Legendre polinomioak
Farsi\ \ ch ndjomle-eeye Legendre
Persian-Farsi\ \ -
Arabic\ \ كثيرات الحدود لليجاندر
Afrikaans\ \ Legendre-polinome
Chinese\ \ 莱 根 德 多 项 数
Korean\ \ 르장드르 다항식

Statistical terms. 2014.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Legendre polynomials — Note: People sometimes refer to the more general associated Legendre polynomials as simply Legendre polynomials . In mathematics, Legendre functions are solutions to Legendre s differential equation::{d over dx} left [ (1 x^2) {d over dx} P n(x)… …   Wikipedia

  • Legendre wavelet — Legendre wavelets: spherical harmonic wavelets = Compactly supported wavelets derived from Legendre polynomials are termed spherical harmonic or Legendre wavelets [1] . Legendre functions have widespread applications in which spherical coordinate …   Wikipedia

  • Legendre-Polynome — Die Legendre Polynome, auch zonale Kugelfunktionen genannt, sind die partikulären Lösungen der legendreschen Differentialgleichung. Sie sind spezielle reelle oder komplexe Polynome, die ein orthogonales Funktionensystem bilden. Benannt sind sie… …   Deutsch Wikipedia

  • Legendre-Polynom — Die Legendre Polynome (nach Adrien Marie Legendre), auch zonale Kugelfunktionen genannt, sind spezielle Polynome, die auf dem Intervall [ 1,1] ein orthogonales Funktionensystem bilden. Sie sind die partikulären Lösungen der legendreschen… …   Deutsch Wikipedia

  • Legendre rational functions — In mathematics the Legendre rational functions are a sequence of functions which are both rational and orthogonal. A rational Legendre function of degree n is defined as::R n(x) = frac{sqrt{2{x+1},L nleft(frac{x 1}{x+1} ight)where L n(x) is a… …   Wikipedia

  • Legendre, Adrien-Marie — (1752 1833)    mathematician    Born in Paris, Adrien Marie Legendre was commissioned by the Convention at the time of the revolution of 1789 to work on geodesics and, in doing so, enriched the study of trigonometry, developing a method, for… …   France. A reference guide from Renaissance to the Present

  • Classical orthogonal polynomials — In mathematics, the classical orthogonal polynomials are the most widely used orthogonal polynomials, and consist of the Hermite polynomials, the Laguerre polynomials, the Jacobi polynomials together with their special cases the ultraspherical… …   Wikipedia

  • Associated Legendre function — Note: This article describes a very general class of functions. An important subclass of these functions mdash;those with integer ell and m mdash;are commonly called associated Legendre polynomials , even though they are not polynomials when m is …   Wikipedia

  • Orthogonal polynomials — In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the… …   Wikipedia

  • Polinomios de Legendre — Saltar a navegación, búsqueda En matemáticas al resolver la formula de Rodrigues, las Funciones de Legendre son las soluciones a las Ecuaciones Diferenciales de Legendre: llamadas así por el matemático francés Adrien Marie Legendre. Estas… …   Wikipedia Español

  • Adrien-Marie Legendre — Infobox Scientist name = Adrien Marie Legendre caption = Adrien Marie Legendre birth date = birth date|1752|9|18|mf=y birth place = Paris, France death date = death date and age|1833|1|10|1752|9|18|mf=y death place = Paris, France residence =… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”